
MATLAB® Production Server™

.NET Programming Guide

R2014a

How to Contact MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Production Server™ .NET Programming Guide

© COPYRIGHT 2012–2014 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program
or Documentation, the government hereby agrees that this software or documentation qualifies as
commercial computer software or commercial computer software documentation as such terms are used
or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and
conditions of this Agreement and only those rights specified in this Agreement, shall pertain to and govern
the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government’s needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2014 Online only New for Version 1.2 (Release R2014a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Client Programming

1
MATLAB Production Server Examples Available on
MATLAB Central . 1-2

Create a MATLAB Production Server Client 1-3

Create a C# .NET Application That Calls a Deployed
Function . 1-4

Unsupported MATLAB Data Types for Client and
Server Marshaling . 1-9

.NET Client Programming

2
.NET Client Coding Best Practices 2-2
.NET Client Prerequisites . 2-2
Handling Exceptions . 2-2
Managing System Resources . 2-3
Data Conversion for .NET and MATLAB Types 2-4
Where to Find the API Documentation 2-4

Prepare Your Microsoft Visual Studio Environment . . 2-5
Create a Microsoft Visual Studio Project 2-5
Create a Reference to the Client Run-Time Library 2-5

Configure the Client-Server Connection 2-6
Create a Connection with the Default Configuration 2-6
Create a Connection with a Custom Configuration 2-6
Implementing a Custom Connection Configuration 2-7

iii

Invoke MATLAB Functions Dynamically 2-8
Create a Reflection-Based Proxy . 2-8
Invoke a MATLAB Function with a Dynamic Proxy 2-9
Create Custom Marshaling Rules . 2-10

Access Secure Programs Using HTTPS 2-12
Overview . 2-12
Configure the Client Environment for SSL 2-12
Establish a Secure Proxy Connection 2-12
Establish a Secure Connection Using Client
Authentication . 2-13

Implement Advanced Authentication Features 2-14

Bond Pricing Tool for .NET Client 2-15
Objectives . 2-15
Step 1: Write MATLAB Code . 2-15
Step 2: Create a Deployable Archive with the Server
Archive Compiler App . 2-16

Step 3: Share the Deployable Archive on a Server 2-16
Step 4: Create the C# Client Code . 2-17
Step 5: Build the Client Code and Run the Example 2-18

Code Multiple Outputs for C# .NET Client 2-20

Code Variable-Length Inputs and Outputs for .NET
Client . 2-22
Using varargin with .NET Client . 2-22
Using varargout with .NET Client . 2-23

Marshal MATLAB Structures (structs) in C# 2-27
Creating a MATLAB Structure . 2-27
Using .NET Structs and Classes . 2-28
Using Attributes . 2-34

Data Conversion with C# and MATLAB Types 2-39
Working with MATLAB Data Types 2-39
Scalar Numeric Type Coercion . 2-40
Dimension Coercion . 2-41
Empty (Zero) Dimensions . 2-44

iv Contents

Data Conversion Rules

A
Conversion Between MATLAB Types and C# Types . . . A-2

MATLAB Production Server .NET Client API
Classes and Methods

B
MATLABException . B-2
About MATLABException . B-2
Members . B-2
Requirements . B-4
See Also . B-4

MATLABStackFrame . B-5
About MATLABStackFrame . B-5
Members . B-5
Requirements . B-7
See Also . B-7

MWClient . B-8
About MWClient . B-8
Members . B-8
Requirements . B-9
See Also . B-9

MWHttpClient . B-10
About MWHttpClient . B-10
Members . B-11
Requirements . B-12
See Also . B-12

MWStructureListAttribute . B-13
About MWStructureListAttribute . B-13
Members . B-13
Requirements . B-13

v

vi Contents

1

Client Programming

• “MATLAB® Production Server™ Examples Available on MATLAB Central”
on page 1-2

• “Create a MATLAB® Production Server™ Client” on page 1-3

• “Create a C# .NET Application That Calls a Deployed Function” on page 1-4

• “Unsupported MATLAB Data Types for Client and Server Marshaling”
on page 1-9

1 Client Programming

MATLAB Production Server Examples Available on MATLAB
Central

Additional Client examples for MATLAB® Production Server™ are available
on MATLAB Central at http://www.mathworks.com/matlabcentral.

1-2

http://www.mathworks.com/matlabcentral/
http://www.mathworks.com/matlabcentral/

Create a MATLAB® Production Server™ Client

Create a MATLAB Production Server Client
To create a MATLAB Production Server client:

1 Obtain the client run-time files installed in in $MPS_INSTALL/client.

2 In consultation with the MATLAB programmer, agree on the MATLAB
function signatures that comprise the services in the application.

3 Configure your system with the appropriate software for working with Java
or .NET.

4 Write a the appropriate Java or .NET interface for the MATLAB functions the
client uses.

5 Write a the Java or .NET code to instantiate a proxy to a MATLAB Production
Server instance and call the MATLAB functions.

a Create a dynamic proxy for communicating with the service hosted by
MATLAB Production Server software.

b Declare and throw exceptions as required.

c Free system resources using the close method of MWClient, after making
needed calls to your application.

1-3

1 Client Programming

Create a C# .NET Application That Calls a Deployed
Function

This example shows how to call a deployed MATLAB function from a C#
application using MATLAB Production Server.

In your C# code, you must:

• Create a Microsoft® Visual Studio® Project.

• Create a Reference to the Client Run-Time Library.

• Design the .NET interface in C#.

• Write, build, and run the C# application.

This task is typically performed by .NET application programmer. This part
of the tutorial assumes you have Microsoft Visual Studio and .NET installed
on your computer.

Create a Microsoft Visual Studio Project

1 Open Microsoft Visual Studio.

2 Click File > New > Project.

3 In the New Project dialog, select the project type and template you want to
use. For example, if you want to create a C# Console Application, select
Windows in the Visual C# branch of the Project Type pane, and select
the C# Console Application template from the Templates pane.

4 Type the name of the project in the Name field (Magic, for example).

5 Click OK. Your Magic source shell is created, typically named Program.cs,
by default.

Create a Reference to the Client Run-Time Library

Create a reference in your MainApp code to the MATLAB Production Server
client run-time library. In Microsoft Visual Studio, perform the following
steps:

1-4

Create a C# .NET Application That Calls a Deployed Function

1 In the Solution Explorer pane within Microsoft Visual Studio (usually on
the right side), select the name of your project, Magic, highlighting it.

2 Right-click Magic and select Add Reference.

3 In the Add Reference dialog box, select the Browse
tab. Browse to the MATLAB Production Server client
runtime, installed at $MPS_INSTALL\client\dotnet. Select
MathWorks.MATLAB.ProductionServer.Client.dll.

4 Click OK. MathWorks.MATLAB.ProductionServer.Client.dll is now
referenced by your Microsoft Visual Studio project.

Design the .NET Interface in C#

In this example, you invoke mymagic.m, hosted by the server, from a .NET
client, through a .NET interface.

To match the MATLAB function mymagic.m, design an interface named Magic.

For example, the interface for the mymagic function:

function m = mymagic(in)
m = magic(in);

might look like this:

public interface Magic
{

double[,] mymagic(int in1);
}

Note the following:

• The .NET interface has the same number of inputs and outputs as the
MATLAB function.

• You are deploying one MATLAB function, therefore you define one
corresponding .NET method in your C# code.

• Both MATLAB function and .NET interface process the same types: input
type int and the output type two-dimensional double.

1-5

1 Client Programming

• You specify the name of your deployable archive (magic, which resides
in your auto_deploy folder) in your URL, when you call CreateProxy
("http://localhost:9910/magic").

Write, Build, and Run the .NET Application

Create a C# interface named Magic in Microsoft Visual Studio by doing the
following:

1 Open the Microsoft Visual Studio project, MagicSquare, that you created
earlier.

2 In Program.cs tab, paste in the code below.

Note Take care to ensure you reference the precise name of the deployable
archive you are hosting on your server, as well as the port number where
your server listens for client requests. For example, in the code below, the
URL value ("http://localhost:9910/mymagic_deployed") contains both
the archive name (mymagic_deployed) and the port number (9910).

using System;

using System.Net;

using MathWorks.MATLAB.ProductionServer.Client;

namespace Magic

{

public class MagicClass

{

class CustomConfig : MWHttpClientConfig

{

public int TimeoutMilliSeconds

{

get { return 120000; }

}

}

public interface Magic

1-6

Create a C# .NET Application That Calls a Deployed Function

{

double[,] mymagic(int in1);

}

public static void Main(string[] args)

{

MWClient client = new MWHttpClient();

try

{

Magic me = client.CreateProxy<Magic>

(new Uri("http://localhost:9910/mymagic_deployed"));

double[,] result1 = me.mymagic(4);

print(result1);

}

catch (MATLABException ex)

{

Console.WriteLine("{0} MATLAB exception caught.", ex);

Console.WriteLine(ex.StackTrace);

}

catch (WebException ex)

{

Console.WriteLine("{0} Web exception caught.", ex);

Console.WriteLine(ex.StackTrace);

}

finally

{

client.Dispose();

}

Console.ReadLine();

}

public static void print(double[,] x)

{

int rank = x.Rank;

int [] dims = new int[rank];

for (int i = 0; i < rank; i++)

{

dims[i] = x.GetLength(i);

}

1-7

1 Client Programming

for (int j = 0; j < dims[0]; j++)

{

for (int k = 0; k < dims[1]; k++)

{

Console.Write(x[j,k]);

if (k < (dims[1] - 1))

{

Console.Write(",");

}

}

Console.WriteLine();

}

}

}

}

3 Build the application. Click Build > Build Solution.

4 Run the application. Click Debug > Start Without Debugging. The
program returns the following console output:

16,2,3,13
5,11,10,8
9,7,6,12
4,14,15,1

1-8

Unsupported MATLAB Data Types for Client and Server Marshaling

Unsupported MATLAB Data Types for Client and Server
Marshaling

These data types are not supported for marshaling between MATLAB
Production Server server instances and clients:

• MATLAB function handles

• Complex (imaginary) data

• Sparse arrays

1-9

1 Client Programming

1-10

2

.NET Client Programming

• “.NET Client Coding Best Practices” on page 2-2

• “Prepare Your Microsoft® Visual Studio® Environment” on page 2-5

• “Configure the Client-Server Connection” on page 2-6

• “Invoke MATLAB Functions Dynamically” on page 2-8

• “Access Secure Programs Using HTTPS ” on page 2-12

• “Bond Pricing Tool for .NET Client” on page 2-15

• “Code Multiple Outputs for C# .NET Client” on page 2-20

• “Code Variable-Length Inputs and Outputs for .NET Client” on page 2-22

• “Marshal MATLAB Structures (structs) in C#” on page 2-27

• “Data Conversion with C# and MATLAB Types” on page 2-39

2 .NET Client Programming

.NET Client Coding Best Practices
When writing .NET interfaces to invoke MATLAB code, remember these
guidelines:

• The method name exposed by the interface must match the name of the
MATLAB function being deployed. The method must have the same
number of inputs and outputs as the MATLAB function.

• The method input and output types must be convertible to and from
MATLAB.

• The number of inputs and outputs must be compatible with those supported
by MATLAB.

• If you are working with MATLAB structures, remember that the field
names are case sensitive and must match in both the MATLAB function
and corresponding user-defined .NET type.

• The name of the interface can be any valid .NET name.

• Your code should support exception handling.

.NET Client Prerequisites
Complete these steps to prepare your MATLAB Production Server .NET
development environment.

1 Install Microsoft Visual Studio. See
http://www.mathworks.com/support/compilers/current_release/ for an
up-to-date listing of supported software, including IDEs and Microsoft
.NET Frameworks.

2 Verify that your application is deployed to a running server instance.

Handling Exceptions
You should declare exceptions for the following errors:

2-2

http://www.mathworks.com/support/compilers/current_release/

.NET Client Coding Best Practices

For This Error Use This
Method

To Declare This Exception

MATLAB errors MATLABException MathWorks.MATLAB.ProductionServer.Client.
MWClient.MATLABException

Transport errors
occurring during
client-server
communication

WebException System.Net.WebException

Managing System Resources
A single .NET client connects to one or more servers available at different
URLs. Even though users sometimes create multiple instances of
MWHttpClient, you can use a single instance to communicate with more than
one server. The server and client have a one to one relationship at any point
in time. The server cannot communicate with multiple clients simultaneously.

Proxy objects, created using an instance of MWHttpClient, communicate with
the server until the Dispose method of that instance is invoked. Therefore,
it is important to call the Dispose method only when the MWHttpClient
instance is no longer needed, to reclaim system resources.

Using IDisposable to Release Resources Consumed by
MWHttpClient Instances
Call the Dispose method (an implementation of IDisposable) on unneeded
client instances to free native resources, such as open connections created by
an instance of MWHttpClient.

You call Dispose in either of two ways:

• Call Dispose Directly — Call the method directly on the object whose
resources you want to free:

client.Dispose();

• The using keyword — Implicitly invoke Dispose on theMWHttpClient
instance with the using keyword. By doing this, you don’t have to explicitly
call the Dispose method—the .NET Framework handles cleanup for you.

2-3

2 .NET Client Programming

Following is a code snippet that demonstrates use of the using keyword:

using (MWClient client = new MWHttpClient(new TestConfigDispose()))
{

// Use client to create proxy instances and invoke
// MATLAB functions....

}

Caution Calling Dispose on instances of MWClient closes all open sockets
bound to the instance.

Data Conversion for .NET and MATLAB Types
For information regarding supported MATLAB types for client and server
marshaling, see “Unsupported MATLAB Data Types for Client and Server
Marshaling” on page 1-9

Where to Find the API Documentation
The API doc for the .NET client is installed in $MPS_INSTALL/client.

2-4

Prepare Your Microsoft® Visual Studio® Environment

Prepare Your Microsoft Visual Studio Environment
Before you begin writing the .NET application interface, complete the
following steps to prepare your development environment.

Create a Microsoft Visual Studio Project

1 Open Microsoft Visual Studio.

2 Click File > New > Project.

3 In the New Project dialog box, select the project type and template you
want to use. For example, if you want to create a C# Console Application,
selectWindows in the Visual C# branch of the Project Type pane. Select
the C# Console Application template from the Templates pane.

4 Type the name of the project in the Name field (MainApp, for example).

5 Click OK. Your MainApp source shell is created.

Create a Reference to the Client Run-Time Library
Create a reference in your MainApp code to the MATLAB Production Server
client run-time library. In Microsoft Visual Studio, perform the following
steps:

1 In the Solution Explorer pane within Microsoft Visual Studio (usually on
the right side), select the name of your project, MainApp, highlighting it.

2 Right-click MainApp and select Add Reference.

3 In the Add Reference dialog box, select the Browse
tab. Browse to the MATLAB Production Server client
runtime, installed at $MPS_INSTALL\client\dotnet. Select
Mathworks.MATLAB.ProductionServer.Client.dll.

4 Click OK. Mathworks.MATLAB.ProductionServer.Client.dll is now
referenced by your Microsoft Visual Studio project.

2-5

2 .NET Client Programming

Configure the Client-Server Connection

In this section...

“Create a Connection with the Default Configuration” on page 2-6

“Create a Connection with a Custom Configuration” on page 2-6

“Implementing a Custom Connection Configuration” on page 2-7

You configure the client-server connection using an object that implements
the MWHttpClientConfig interface. This interface defines these properties:

• TimeoutMilliSeconds determines the amount of time, in milliseconds, the
client waits for a response before timing out

• ResponseSizeLimit determines the maximum size, in bytes, of the
response a client accepts.

The API provides a default implementation, MWHttpClientDefaultConfig,
that is automatically used when an HTTP client is instantiated. To modify
the configuration, extend MWHttpClientDefaultConfig and pass it to the
HTTP client constructor.

Create a Connection with the Default Configuration
When you create a client connection using the default constructor,
MWHttpClient(), an instance of MWHttpClientDefaultConfig is
automatically used to configure the client-server connection. The default
configuration sets these connection properties:

• TimeOutMs = 120000

• ResponseSizeLimit = 64*1024*1024 (64 MB)

Create a Connection with a Custom Configuration
To change one or more connection properties:

1 Implement a custom connection configuration by extending the
MWHttpClientDefaultConfig interface.

2-6

Configure the Client-Server Connection

2 Create the client connection using one of the constructors that accepts a
configuration object.

• MWHttpClient(MWHttpClientConfig config)

• MWHttpClient(MWHttpClientConfig config, MWSSLConfig
securityConfig)

This code sample creates a client connection with a timeout value of 1000 ms:

class MyClientConfig : MWClientDefaultConfig
{

public override int TimeoutMilliSeconds
{

get { return 1000; }
}

}
...
MWClient client = new MWHttpClient(new MyClientConfig());
...

Implementing a Custom Connection Configuration
To implement a custom connection configuration extend the
MWHttpClientDefaultConfig interface. The MWHttpClientDefaultConfig
interface has one getter method for each configuration property.

To specify that a client times out after 1 s and can only accept 4 MB responses:

class MyClientConfig : MWClientDefaultConfig
{

public override int TimeoutMilliSeconds
{

get { return 60000; }
}
public override int ResponseSizeLimit
{

get { return 4*1024*1024; }
}

}

2-7

2 .NET Client Programming

Invoke MATLAB Functions Dynamically

In this section...

“Create a Reflection-Based Proxy” on page 2-8

“Invoke a MATLAB Function with a Dynamic Proxy” on page 2-9

“Create Custom Marshaling Rules” on page 2-10

To dynamically invoke MATLAB functions, specify the function name as one
of the parameters to the method invoking the request. You do not need to
create a compiled interface that models the contents of a deployable archive,
nor do you have to change your client application if there are changes to
functions in the deployable archive.

To dynamically invoke a MATLAB function:

1 Instantiate an MWClient instance.

2 Create a reflection-based proxy object using one of the
createComponentProxy() methods of the client connection.

3 Invoke the function, or functions, using one of the Invoke() methods of
the reflection-based proxy.

Create a Reflection-Based Proxy
A reflection-based proxy implements the MWInvokable interface and provides
methods that allow you directly invoke any MATLAB function deployed
as part of a deployable archive. As with the interface-based proxy, a
reflection-based proxy is created from an MWClient object. The MWClient
interface has two methods for creating a reflection-based proxy:

• MWInvokable createComponentProxy(URL archiveURL) creates a proxy
that uses standard MATLAB data types.

• MWInvokable createComponentProxy(URL archiveURL,
MWMarshallingRules marshallingRules) creates a proxy that uses
structures.

2-8

Invoke MATLAB Functions Dynamically

To create a reflection-based proxy for invoking functions in the myMagic
archive, hosted on your local computer:

MWClient myClient = new MWHttpClient();

Uri archiveURL = new Uri("http://localhost:9910/myMagic");
MWInvokable myProxy = myClient.createComponentProxy(archiveURL);

Invoke a MATLAB Function with a Dynamic Proxy
A dynamic proxy has three methods for invoking functions on a server:

• Object[] Invoke(string functionName, IList<Type> targetTypes,
params Object[] inputs) invokes a function that returns multiple values.

• T Invoke<T>(string functionName, params Object[] inputs) invokes
a functions that returns a single value.

• void Invoke(string functionName, params Object[] inputs) invokes
a function that returns no values.

All of the methods map to the MATLAB function as follows:

• First argument is the function name

• Last arguments are the function inputs

Return Multiple Outputs
The MATLAB function myLimits returns two values.

function [myMin,myMax] = myLimits(myRange)
myMin = min(myRange);
myMax = max(myRange);

end

To invoke myLimits from a .NET client, use the Invoke() method that takes
a list of target types:

double[] myRange = new double[]{2,5,7,100,0.5};
IList<Type> targetTypes = new List<Type> { typeof(double), typeof(double) }
Object[] myLimits = myProxy.Invoke("myLimits", targetTypes, myRange);
double myMin = myLimits[0]

2-9

2 .NET Client Programming

double myMax = myLimits[1]
Console.WriteLine("min: {0:f} max: {1:f}", myMin, myMax);

This form of Invoke() always returns Object[]. The contents of the returned
array are typed based on the contents of targetType.

Return a Single Output
The MATLAB function addmatrix returns a single value.

function a = addmatrix(a1, a2)
a = a1 + a2;

To invoke addmatrix from a .NET client, use the Invoke() method that does
not take the number of return arguments:

double[,] a1 = new double[,] {{1,2,3},{3,2,1}};
double[,] a2 = new double[,] {{4,5,6},{6,5,4}};
Object[] inputs = new Object[2];
inputs[0] = a1;
inputs[1] = a2;
double[,] result = myProxy.Invoke<double[,]>("addmatrix", inputs);

// display the result

Return No Outputs
The MATLAB function foo does not return a value.

function foo(a1)
min(a1);

To invoke foo from a .NET client, use the Invoke() method that returns void:

double[,] a = new double [,] {{1,2,3},{3,2,1}};
myProxy.Invoke("foo", a);

Create Custom Marshaling Rules
You need to provide marshaling rules to the reflection-based proxy if any
MATLAB function in a deployable archive uses structures, or if any requires a

2-10

Invoke MATLAB Functions Dynamically

custom setting to the default marshaling rules for NaN, DateTime, or null. To
provide marshaling rules to the proxy:

1 Implement a new set of marshaling rules by extending
MWDefaultMarshalingRules to override the defaults.

2 Create the proxy using createComponentProxy(URL archiveURL,
MWMarshallingRules marshalingRules).

The deployable archive studentCheck includes functions that use a MATLAB
structure of the form

S =
name: 'Ed Plum'
score: 83
grade: 'B+'

Client code represents the MATLAB structure with a class named Student.
To create a marshaling rule for dynamically invoking the functions in
studentChecker, create a class named studentMarshaller.

class studentMarshaller : MWDefaultMarshallingRules
{

public override IList<Types> StructTypes()
{

get { return new List<Type> { typeof(Student) }; }
}

}

Create the dynamic proxy for studentCheck by passing studentMarshaller
to createComponentProxy().

URL archiveURL = new URL("http://localhost:9910/studentCheck");
myProxy = myClient.createComponentProxy(archiveURL, new StudentMarshaller(

For more information about using MATLAB structures, see “Marshal
MATLAB Structures (structs) in C#” on page 2-27.

For more information about the other data marshaling rules, see “Data
Conversion with C# and MATLAB Types” on page 2-39.

2-11

2 .NET Client Programming

Access Secure Programs Using HTTPS

In this section...

“Overview” on page 2-12

“Configure the Client Environment for SSL ” on page 2-12

“Establish a Secure Proxy Connection” on page 2-12

“Establish a Secure Connection Using Client Authentication” on page 2-13

“Implement Advanced Authentication Features” on page 2-14

Overview
Connecting to a MATLAB Production Server instance over HTTPS provides
a secure channel for executing MATLAB functions. To establish an HTTPS
connection with a MATLAB Production Server instance:

1 Ensure that the server is configured to use HTTPS.

2 Install the required credentials on the client system.

3 Configure the client’s .NET environment to use the credentials.

4 Create the program proxy using the program’s https:// URL.

Configure the Client Environment for SSL
At a minimum the client requires the server’s root CA (Certificate Authority)
in one of the application’s certificate stores.

To connect to a server that requires client-side authentication, the client
needs a signed certificate in one of the application’s certificate stores.

To manage the client’s certificates, use makecert. For information on using
makecert see the MSDN documentation.

Establish a Secure Proxy Connection
Create a secure proxy connection with a MATLAB Production Server instance
by using the https:// URL for the desired program:

2-12

http://msdn.microsoft.com/en-us/library/bfsktky3.aspx

Access Secure Programs Using HTTPS

MWClient client = new MWHttpClient();
Uri secureUri = new Uri("https://host:port/myProgram")
MyProxy sslProxy = client.createProxy<MyProxy>(secureUri);

sslProxy checks the application’s certificate stores to perform the HTTPS
server authentication. If the server requests client authentication, the HTTPS
handshake will fail because the client does not have a certificate.

Establish a Secure Connection Using Client
Authentication
To enable a client to connect with a server instance requiring client
authentication:

1 Provide an implementation of the MWSSLConfig interface that returns a valid
client certificate collection.

2 Use the MWHttpClient constructor that takes an instance of your MWSSLConfig
implementation to create the connection to the server instance.

3 Create the proxy using the program’s https:// URL.

Implement the MWSSLConfig Interface
The MWSSLConfig interface has a single property, ClientCertificates, of
type X509CertificateCollection. Provide an implementation that returns
the client’s certificates.

public class ClientSSLConfig : MWSSLConfig

{

public X509CertificateCollection ClientCertificates

{

get

{

X509Certificate2 clientCert = new X509Certificate2("C:\temp\certificate.pfx");

return new X509Certificate2Collection(clientCert);

}

}

}

2-13

2 .NET Client Programming

Establish the Secure Connection
Create a secure proxy connection with a MATLAB Production Server instance
by using the constructor that takes an instance of your MWSSLConfig
implementation and creating the proxy with the https:// URL for the
desired program:

MWClient client = new MWHttpClient(new ClientSSLConfig());
Uri secureUri = new Uri("https://host:port/myProgram")
MyProxy sslProxy = client.createProxy<MyProxy>(secureUri);

sslProxy uses the local user trust store to perform the HTTPS server
authentication. If the server requests client authentication, the client passes
the certificates in the collection returned by your implementation of the
MWSSLConfig interface.

Implement Advanced Authentication Features
The .NET ServicePointManager.ServerCertificateValidationCallback
property allows you add extra layers of security to:

• Perform alternate hostname verification to authenticate servers when the
URL hostname does not match the certificate’s hostname

• Ensure that the client shares data only with specific servers

The ServerCertificateValidationCallback property is a delegate that
processes the certificates during the SSL handshake. By default, no delegate
is implemented, so no custom processing is performed. You can provide an
implementation to perform any custom authorization required. For more
information see the .Net ServicePointManager documentation.

2-14

http://msdn.microsoft.com/en-us/library/system.net.servicepointmanager.servercertificatevalidationcallback.aspx

Bond Pricing Tool for .NET Client

Bond Pricing Tool for .NET Client
This example shows an application that calculates a bond price from a simple
formula.

You run this example by entering the following known values into a simple
graphical interface:

• Coupon payment — C

• Number of payments — N

• Interest rate — i

• Value of bond or option at maturity — M

The application calculates price (P) based on the following equation:

P = C * ((1 - (1 + i)^-N) / i) + M * (1 + i)^-N

Objectives
The Bond Pricing Tool demonstrates the following features of MATLAB
Production Server:

• Deploying a simple MATLAB function with a fixed number of inputs and
a single output

• Deploying a MATLAB function with a simple GUI front-end for data input

• Using dispose() to free system resources

Step 1: Write MATLAB Code
Implement the Bond Pricing Tool in MATLAB, by writing the following code.
Name the code pricecalc.m.

Sample code is available in MPS_INSTALL\client\java\examples\MATLAB.

function price = pricecalc(value_at_maturity, coupon_payment,...
interest_rate, num_payments)

C = coupon_payment;
N = num_payments;

2-15

2 .NET Client Programming

i = interest_rate;
M = value_at_maturity;

price = C * ((1 - (1 + i)^-N) / i) + M * (1 + i)^-N;

end

Step 2: Create a Deployable Archive with the Server
Archive Compiler App
To create the deployable archive for this example:

1 From MATLAB, select the Server Archive Compiler App.

2 In the Application Type list, select Deployable Archive.

3 In the Exported Functions field, add pricecalc.m.

pricecalc.m is located in
MPS_INSTALL\client\java\examples\BondPricingTool\MATLAB.

4 Under Application Information, change pricecalc to BondTools.

5 Click Package.

The generated deployable archive, BondTools.ctf is located in the
for_redistribution_files_only of the project’s folder.

Step 3: Share the Deployable Archive on a Server

1 Download the MATLAB Compiler Runtime, if needed, at
http://www.mathworks.com/products/compiler/mcr. See “Download and
Install the MATLAB Compiler Runtime (MCR)” for more information.

2 Create a server using mps-new. See “Create a Server” for more information.

3 If you have not already done so, specify the location of the MATLAB
Compiler Runtime (MCR) to the server by editing the server configuration
file, main_config and specifying a path for --mcr-root. See “Edit the
Configuration File” for details.

2-16

http://www.mathworks.com/products/compiler/mcr

Bond Pricing Tool for .NET Client

4 Start the server using mps-start and verify it is running with mps-status.

5 Copy the BondTools.ctf file to theauto_deploy folder on the server for
hosting. See “Share the Deployable Archive” for complete details.

Step 4: Create the C# Client Code
Create a compatible client interface, defining methods in C# to match
MATLAB function pricecalc.m, hosted by the server as BondTools.ctf,
using the guidelines in this section.

When developing your C# code, perform the following tasks, described in the
sections that follow. For more information about clients coding basics and
best practices, see “.NET Client Coding Best Practices” on page 2-2.

Declare C# Method Signatures Compatible with MATLAB
Functions You Deploy
To use the MATLAB functions you defined in “Step 1: Write MATLAB Code”
on page 2-15, declare the corresponding C# method signature in the interface
BondTools.cs:

public interface BondTools
{

double pricecalc(double faceValue, double couponYield,
double interestRate, double numPayments);

}

This interface creates an array of primitive double types, corresponding to the
MATLAB primitive types (Double, in MATLAB, unless explicitly declared)
in pricecalc.m. A one to one mapping exists between the input arguments
in both the MATLAB function and the C# interface The interface specifies
compatible type double. This compliance between the MATLAB and C#
signatures demonstrates the guidelines listed in “.NET Client Coding Best
Practices” on page 2-2.

Instantiate MWClient, Create Proxy, and Specify Deployable
Archive
In the ServerBondToolsFactory class, perform a typical MATLAB Production
Server client setup:

2-17

2 .NET Client Programming

1 Instantiate MWClient with an instance of MWHttpClient:

...

private MWClient client = new MWHttpClient();

...

2 Call createProxy on the new client instance. Specify port number (9910)
and the deployable archive name (BondTools) the server is hosting in the
auto_deploy folder:

...

public BondTools newInstance()

{

return client.CreateProxy<BondTools>(new Uri("http://localhost:9910/BondTools"));

}...

Use Dispose() Consistently to Free System Resources
This application makes use of the Factory pattern to encapsulate creation of
several types of objects.

Any time you create objects—and therefore allocate resources—ensure you
free those resources using Dispose().

For example, note that in ServerBondToolsFactory.cs, you dispose of the
MWHttpClient instance you created in “Instantiate MWClient, Create Proxy,
and Specify Deployable Archive” on page 2-17 when it is no longer needed.

Additionally, note the Dispose() calls to clean up the factories in
BondToolsStubFactory.cs and BondTools.cs.

Dispose() is an implementation of IDisposable. For more information about
using Dispose() to free resources, see “Use Dispose() Consistently to Free
System Resources” on page 2-18.

Step 5: Build the Client Code and Run the Example
Before you attempt to build and run your client code, ensure that you have
done the following:

2-18

Bond Pricing Tool for .NET Client

• Added the Mathworks.MATLAB.ProductionServer.Client.dll assembly
($MPS_INSTALL\client\net) as a reference to your Microsoft Visual Studio
project.

• Copied your deployable archive to your server’s auto_deploy folder.

• Modified your server’s main_config file to point to where your MCR is
installed.

• Started your server and verified it is running.

2-19

2 .NET Client Programming

Code Multiple Outputs for C# .NET Client
MATLAB allows users to write functions with multiple outputs. To code
multiple outputs in C#, use the out keyword.

The following MATLAB code takes multiple inputs (i1, i2, i3) and returns
multiple outputs (o1, o2, o3), after performing some checks and calculations.

In this example, the first input and output are of type double, and the second
input and output are of type int. The third input and output are of type
string.

To deploy this function with MATLAB Production Server software, you need
to write a corresponding method interface in C#, using the out keyword.
Specifying the out keyword causes arguments to be passed by reference.
When using out, ensure both the interface method definition and the calling
method explicitly specify the out keyword.

The output argument data types listed in your C# interface (referenced
with the out keyword) must match the output argument data types
listed in your MATLAB signature exactly. Therefore, in the C# interface
(MultipleOutputsExample) and method (TryMultipleOutputs) code samples,
multiple outputs are listed (with matching specified data types) in the same
order as they are listed in your MATLAB function.

MATLAB Function multipleoutputs

function [o1 o2 o3] = multipleoutputs(i1, i2, i3)
o1 = modifyinput(i1);
o2 = modifyinput(i2);
o3 = modifyinput(i3);

function out = modifyinput(in)
if(isnumeric(in))

out = in*2;
elseif(ischar(in))

out = upper(in);
else

out = in;
end

2-20

Code Multiple Outputs for C# .NET Client

C# Interface MultipleOutputsExample

public interface MultipleOutputsExample

{

void multipleoutputs(out double o1, out int o2, out string o3,

double i1, int i2, string i3);

}

C# Method TryMultipleOutputs

public static void TryMultipleOutputs()

{

MWClient client = new MWHttpClient();

MultipleOutputsExample mpsexample =

client.CreateProxy<MultipleOutputsExample>(new Uri("http://localhost:9910/mpsexample"));

double o1;

int o2;

string o3;

mpsexample.multipleoutputs(out o1, out o2, out o3, 1.2, 10, "hello");

}

After creating a new instance of MWHttpClient and a client proxy, variables
and the calling method, multipleoutputs, are declared.

In the multipleoutputs method, values matching each declared types are
passed for output (1.2 for double, 10 for int, and hello for string) to
output1.

Note the following coding best practices illustrated by this example:

• Both the MATLAB function signature and the C# interface method
signature use the name multipleOutputs. Both MATLAB and C# code are
processing three inputs and three outputs.

• MATLAB .NET interface supports direct conversion from C# double array
to MATLAB double array and from C# string to MATLAB char array. For
more information, see “Data Conversion with C# and MATLAB Types”
on page 2-39 and “Conversion Between MATLAB Types and C# Types”
on page A-2.

2-21

2 .NET Client Programming

Code Variable-Length Inputs and Outputs for .NET Client
MATLAB Production Server .NET client supports the MATLAB capability of
working with variable-length inputs. See theMATLAB Function Reference for
complete information on varargin and varargout.

Using varargin with .NET Client
You pass MATLAB variable input arguments (varargin) using the params
keyword.

For example, consider the MATLAB function varargintest, which takes
a variable-length input (varargin)—containing strings and integers—and
returns an array of cells (o).

MATLAB Function varargintest

function o = varargintest(s1, i2, varargin)

o{1} = s1;
o{2} = i2;
idx = 3;
for i=1:length(varargin)

o{idx} = varargin{i};
idx = idx+1;

end

The C# interface VararginTest implements the MATLAB function
varargintest.

C# Interface VararginTest

public interface VararginTest
{

object[] varargintest(string s, int i, params object[] objArg);
}

Since you are sending output to cell arrays in MATLAB, you define a
compatible C# array type of object[] in your interface. objArg defines
number of inputs passed—in this case, two.

2-22

http://msdn.microsoft.com/en-us/library/w5zay9db(v=vs.71).aspx

Code Variable-Length Inputs and Outputs for .NET Client

The C# method TryVarargin implements VararginTest, sending two strings
and two integers to the deployed MATLAB function, to be returned as a
cell array.

C# Method TryVarargin

public static void TryVarargin()

{

MWClient client = new MWHttpClient();

VararginTest mpsexample =

client.CreateProxy<VararginTest>(new Uri("http://localhost:9910/mpsexample"));

object[] vOut = mpsexample.varargintest("test", 20, false, new int[]{1,2,3});

Console.ReadLine();

}

Note the following coding best practices illustrated by this example:

• Both the MATLAB function signature and the C# interface method
signature use the name varargintest. Both MATLAB and C# code are
processing two variable-length inputs, string and integer.

• MATLAB .NET interface supports direct conversion between MATLAB cell
arrays and C# object arrays. See “Data Conversion with C# and MATLAB
Types” on page 2-39 and “Conversion Between MATLAB Types and C#
Types” on page A-2 for more information.

Using varargout with .NET Client
MATLAB variable output arguments (varargout) are obtained
by passing an instance of System.Object[] array. The array
is passed with the attribute [varargout], defined in the
Mathworks.MATLAB.ProductionServer.Client.dll assembly.

Before passing the System.Object[] instance, initialize the System.Object
array instance with the maximum length of the variable in your calling
method. The array is limited to one dimension.

For example, consider the MATLAB function varargouttest, which takes
one variable-length input (varargin), and returns one variable-length output
(varargout), as well as two non-variable-length outputs (out1 and out2).

2-23

2 .NET Client Programming

MATLAB Function varargouttest

functionout [out1 out2 varargout] = varargouttest(in1, in2, varargin)

out1 = modifyinput(in1);
out2 =modifyinput(in2);

for i=1:length(varargin)
varargout{i} = modifyinput(varargin{i});

end

function out = modifyinput(in)
if (isnumeric(in))

out = in*2;
elseif (ischar(in))

out = upper(in);
elseif (islogical(in))

out = ~in;
else

out = in;
end

Implement MATLAB function varargouttest with the C# interface
VarargoutTest.

In the interface method varargouttest, you define multiple
non-variable-length outputs (o1 and o2, using the out keyword, described in
“Code Multiple Outputs for C# .NET Client” on page 2-20), a double input
(in1) and a string input (in2).

You pass the variable-length output (o3) using a single-dimensional array
(object[] with attribute [varargout]), an instance of System.Object[].

As with “Using varargin with .NET Client” on page 2-22, you use the params
keyword to pass the variable-length input.

C# Interface VarargoutTest

public interface VarargOutTest

{

2-24

http://msdn.microsoft.com/en-us/library/w5zay9db(v=vs.71).aspx

Code Variable-Length Inputs and Outputs for .NET Client

void varargouttest(out double o1, out string o2, double in1, string in2,

[varargout]object[] o3, params object[] varargIn);

}

In the calling method TryVarargout, note that both the type and length of the
variable output (varargOut) are being passed ((short)12).

C# Method TryVarargout

public static void TryVarargout()

{

MWClient client = new MWHttpClient();

VarargOutTest mpsexample =

client.CreateProxy<VarargOutTest>(new Uri("http://localhost:9910/mpsexample"));

object[] varargOut = new object[3]; // get all 3 outputs

double o1;

string o2;

mpsexample.varargouttest(out o1, out o2, 1.2, "hello",

varargOut, true, (short)12, "test");

varargOut = new object[2]; // only get 2 outputs

double o11;

string o22;

mpsexample.varargouttest(out o11, out o22, 1.2, "hello",

varargOut, true, (short)12, "test");

}

Note Ensure that you initialize varargOut to the appropriate length before
passing it as input to the method varargouttest.

Note the following coding best practices illustrated by this example:

• Both the MATLAB function signature and the C# interface method
signature use the name varargouttest. Both MATLAB and C# code
are processing a variable-length input, a variable-length output, and two
multiple non-variable-length outputs.

2-25

2 .NET Client Programming

• MATLAB .NET interface supports direct conversion between MATLAB cell
arrays and C# object arrays. See “Data Conversion with C# and MATLAB
Types” on page 2-39 and “Conversion Between MATLAB Types and C#
Types” on page A-2 for more information.

2-26

Marshal MATLAB Structures (structs) in C#

Marshal MATLAB Structures (structs) in C#
Structures (or structs) are MATLAB arrays with elements accessed by textual
field designators.

Structs consist of data containers, called fields. Each field stores an array of
some MATLAB data type. Every field has a unique name.

Creating a MATLAB Structure
MATLAB structures are ordered lists of name-value pairs. You represent
them in C# by defining a .NET struct or class, as long as it has public fields
or properties corresponding to the MATLAB structure. A field or property in a
.NET struct or class can have a value convertible to and from any MATLAB
data type, including a cell array or another structure. The examples in this
article use both .NET structs and classes.

In MATLAB, a student structure containing name, score, and grade, is
created as follows:

S.name = 'Ed Plum';
S.score = 83;
S.grade = 'B+'

This code creates a scalar structure (S) with three fields:

S =
name: 'Ed Plum'
score: 83
grade: 'B+'

A multidimensional structure array can be created by inserting additional
elements. A structure array of dimensions (1,3) is created. For example:

S(2).name = 'Tony Miller';
S(2).score = 91;
S(2).grade = 'A-';

S(3).name = 'Mark Jones';
S(3).score = 85;
S(3).grade = 'A-';

2-27

2 .NET Client Programming

Using .NET Structs and Classes
You create .NET structs and classes to marshal data to and from MATLAB
structures.

The .NET struct Student is an example of a .NET struct that is marshaling
.NET types as inputs to MATLAB function, such as sortstudents, using
public fields and properties. Note the publicly declared field name, and the
properties grade and score.

In addition to using a .NET struct, Please note the following:

• Student can also be defined as a class.

• Even though in this example a combination of public fields and properties
is used, you can also use only fields or properties.

.NET Struct Student

public struct Student
{

public string name;
private string gr;
private int sc;

public string grade
{

get { return gr; }
set { gr = value; }

}

public int score
{

get { return sc; }
set { sc = value; }

}

public override string ToString()
{

return name + " : " + grade + " : " + score;

2-28

Marshal MATLAB Structures (structs) in C#

}
}

Note Note that this example uses the ToString for convenience. It is not
required for marshaling.

The C# class SimpleStruct uses public readable properties as input to
MATLAB, and uses a public constructor when marshaling as output from
MATLAB.

When this class is passed as input to a MATLAB function, it results in a
MATLAB struct with fields Field1 and Field2, which are defined as public
readable properties. When a MATLAB struct with field names Field1 and
Field2 is passed from MATLAB, it is used as the target .NET type (string
and double, respectively) because it has a constructor with input parameters
Field1 and Field2.

C# Class SimpleStruct

public class SimpleStructExample
{

private string f1;
private double f2;

public SimpleStruct(string Field1, double Field2)
{

f1 = Field1;
f2 = Field2;

}

public string Field1
{

get
{

return f1;
}

}

2-29

2 .NET Client Programming

public double Field2
{

get
{

return f2;
}

}
}

MATLAB function sortstudents takes in an array of student structures
and sorts the input array in ascending order by score of each student. Each
element in the struct array represents different information about a student.

The C# interface StudentSorter and method sortstudents is provided to
show equivalent functionality in C#.

Your .NET structs and classes must adhere to specific requirements, based on
both the level of scoping (fields and properties as opposed to constructor, for
example) and whether you are marshaling .NET types to or from a MATLAB
structure. See “Using .NET Structs and Classes” on page 2-28 for details.

MATLAB Function sortstudents

function sorted = sortstudents(unsorted)

% Receive a vector of students as input

% Get scores of all the students

scores = {unsorted.score};

% Convert the cell array containing scores into a numeric array or doubles

scores = cell2mat(scores);

% Sort the scores array

[s i] = sort(scores);

% Sort the students array based on the sorted scores array

sorted = unsorted(i);

Note Even though this example only uses the scores field of the input
structure, you can also work with name and grade fields in a similar manner.

2-30

Marshal MATLAB Structures (structs) in C#

The .NET interface StudentSorter, with method sortstudents, uses the
previously defined .NET Student struct for inputs and outputs. When
marshaling structs for input and output in .NET, the Student struct or
class must be included in the MWStructureList attribute. Please refer the
documentation for this custom attribute in the API documentation, located in
$MPS_INSTALL/client.

C# Interface StudentSorter

public interface StudentSorter {
[MWStructureList(typeof(Student))]
Student[] sortstudents(Student[] students);

}

C# Class ClientExample

using System;

using System.Net;

using MathWorks.MATLAB.ProductionServer.Client;

namespace MPS

{

public interface StudentSorter

{

[MWStructureList(typeof(Student))]

Student[] sortstudents(Student[] students);

}

class ClientExample

{

static void Main(string[] args)

{

MWClient client = null;

try

{

client = new MWHttpClient();

StudentSorter mpsexample =

client.CreateProxy(new Uri("http://test-machine:9910/scoresorter"));

2-31

2 .NET Client Programming

Student s1 = new Student();

s1.name = "Tony Miller";

s1.score = 90;

s1.grade = "A";

Student s2 = new Student();

s2.name = "Ed Plum";

s2.score = 80;

s2.grade = "B+";

Student s3 = new Student();

s3.name = "Mark Jones";

s3.score = 85;

s3.grade = "A-";

Student[] unsorted = new Student[] { s1, s2, s3 };

Console.WriteLine("Unsorted list of students :");

foreach (Student st in unsorted)

{

Console.WriteLine(st);

}

Console.WriteLine();

Console.WriteLine("Sorted list of students :");

Student[] sorted = mpsexample.sortstudents(unsorted);

foreach (Student st in sorted)

{

Console.WriteLine(st);

}

}

catch (WebException ex)

{

HttpWebResponse response = (HttpWebResponse)ex.Response;

if (response != null)

{

Console.WriteLine("Status code : " +

2-32

Marshal MATLAB Structures (structs) in C#

response.StatusCode);

Console.WriteLine("Status description : " +

response.StatusDescription);

}

else

{

Console.WriteLine("No response received in

WebException with status : " + ex.Status);

}

}

catch (MATLABException ex)

{

Console.WriteLine("MATLAB error thrown : ");

Console.WriteLine(ex.MATLABIdentifier);

Console.WriteLine(ex.MATLABStackTraceString);

}

finally

{

if (client != null)

{

client.Dispose();

}

}

}

}

}

When you run the application, the following output is generated:

Unsorted list of students :
Tony Miller : A : 90
Ed Plum : B+ : 80
Mark Jones : A- : 85

Sorted list of students :
Ed Plum : B+ : 80
Mark Jones : A- : 85
Tony Miller : A : 90
Press any key to continue . . .

2-33

2 .NET Client Programming

Using Attributes
In addition to using the techniques described in “Using .NET Structs and
Classes” on page 2-28, attributes also provide versatile ways to marshal .NET
types to and from MATLAB structures.

The MATLAB Production Server-defined attribute MWStructureList can be
scoped at field, property, method, or interface level..

In the following example, a MATLAB function takes a cell array (vector) as
input containing various MATLAB struct data types and returns a cell
array (vector) as output containing modified versions of the input structs.

MATLAB Function outcell

function outCell = modifyinput(inCell)

Define the cell array using two .NET struct types:

.NET struct Types Struct1 and Struct2

public struct Struct1{
...
...

}
public struct Struct2{

...

...
}

Without using the MWStructureList attribute, the C# method signature in
the interface StructExample, is as follows:

public interface StructExample
{

public object[] modifyinput(object[] cellArrayWithStructs);
}

Note that this signature, as written, provides no information about the
structure types that cellArrayWithStructs include at run-time. By using

2-34

Marshal MATLAB Structures (structs) in C#

the MWStructureList attribute, however, you define those types directly in
the method signature:

public interface StructExample
{

[MWStructureList(typeof(Struct1), typeof(Struct2))]
public object[] modifyinput(object[] cellArrayWithStructs);

}

The MWStructureList attribute can be scoped at:

• “Method Attributes” on page 2-35

• “Interface Attributes” on page 2-36

• “Fields and Property Attributes” on page 2-36

Method Attributes
In this example, the attribute MWStructureList is used as a method attribute
for marshaling both the input and output types.

public interface StructExample
{

[MWStructureList(typeof(Struct1), typeof(Struct2))]
public object[] modifyinput(object[] cellArrayWithStructs);

}

In this example, struct types Struct1 and Struct2 are not exposed to method
modifyinputNew because modifyinputNew is a separate method signature

public interface StructExample
{

[MWStructureList(typeof(Struct1), typeof(Struct2))]
public object[] modifyinput(object[] cellArrayWithStructs);
public object[] modifyinputNew(object[] cellArrayWithStructs);

}

2-35

2 .NET Client Programming

Interface Attributes
When used at an interface level, an attribute is shared by all the methods
of the interface.

In the following example, both modifyinput and modifyinputNew methods
share the interface attribute MWStructureList because the attribute is
defined prior to the interface declaration.

[MWStructureList(typeof(Struct1), typeof(Struct2))]
public interface StructExample
{

public object[] modifyinput(object[] cellArrayWithStructs);
public object[] modifyinputNew(object[] cellArrayWithStructs);

}

Fields and Property Attributes
Write the interface using public fields or public properties.

You can represent this type of .NET struct in three ways using fields and
properties:

• At the field:

Using public field and the MWStructureList attribute:

public struct StructWithinStruct
{

[MWStructureList(typeof(Struct1), typeof(Struct2))]
public object[] cellArrayWithStructs;

}

• At the property, for both get and set methods:

Using public properties and the MWStructureList attribute:

public struct StructWithinStruct
{

private object[] arr;

[MWStructureList(typeof(Struct1), typeof(Struct2))]

2-36

Marshal MATLAB Structures (structs) in C#

public object[] cellArrayWithStructs
{

get
{

return arr;
}

set
{

arr = value;
}

}
}

• At the property, for both or either get or set methods, depending on whether
this struct will be used as an input to MATLAB or an output from MATLAB:

public struct StructWithinStruct
{

private object[] arr;

public object[] cellArrayWithStructs
{

[MWStructureList(typeof(Struct1), typeof(Struct2))]
get
{

return arr;
}

[MWStructureList(typeof(Struct1), typeof(Struct2))]
set
{

arr = value;
}

}
}

2-37

2 .NET Client Programming

Note The last two examples, which show attributes used at the property,
produce the same result.

2-38

Data Conversion with C# and MATLAB Types

Data Conversion with C# and MATLAB Types
When the .NET client invokes a MATLAB function through a request
and receives a result in the response, data conversion takes place between
MATLAB types and C# types.

Working with MATLAB Data Types
There are many data types, or classes, that you can work with in MATLAB.
Each of these classes is in the form of a matrix or array. You can build
matrices and arrays of floating-point and integer data, characters and strings,
and logical true and false states. Structures and cell arrays provide a way to
store dissimilar types of data in the same array.

All of the fundamental MATLAB classes are circled in the diagram
Fundamental MATLAB Data Classes on page 2-40.

Note Function Handles are not supported by MATLAB Production Server.

2-39

2 .NET Client Programming

Fundamental MATLAB Data Classes

Each MATLAB data type has a specific equivalent in C#. Detailed
descriptions of these one-to-one relationships are defined in “Conversion
Between MATLAB Types and C# Types” on page A-2 in Appendix A, “Data
Conversion Rules”.

Scalar Numeric Type Coercion
Scalar numeric MATLAB types can be assigned to multiple .NET numeric
types as long as there is no loss of data or precision.

The main exception to this rule is that MATLAB double scalar data can be
mapped into any .NET numeric type. Because double is the default numeric
type in MATLAB, this exception provides more flexibility to the users of
MATLAB Production Server .NET client API.

2-40

Data Conversion with C# and MATLAB Types

MATLAB to .NET Numeric Type Compatibility on page 2-41 describes the
type compatibility for scalar numeric coercion.

MATLAB to .NET Numeric Type Compatibility

MATLAB Type Java Types

uint8 System.Int16, System.UInt16,
System.Int32, System.UInt32,
System.Int64, System.UInt64,
System.Single, System.Double

int8 System.Int16, System.Int32,
System.Int64, System.Single,
System.Double

uint16 System.Int32, System.UInt32,
System.Int64, System.UInt64,
System.Single, System.Double

int16 System.Int32, System.Int64,
System.Single, System.Double

uint32 System.Int64, System.UInt64,
System.Single, System.Double

int32 System.Int64, System.Single,
System.Double

uint64 System.Single, System.Double

int64 System.Single, System.Double

single System.Double

double System.SByte, System.Byte,
System.Int16, System.UInt16,
System.Int32, System.UInt32,
System.Int64, System.UInt64,
System.Single

Dimension Coercion
In MATLAB, dimensionality is an attribute of the fundamental types and
does not add to the number of types as it does in .NET.

2-41

2 .NET Client Programming

In C#, double, double[] and double[,] are three different data types. In
MATLAB, there is only a double data type and possibly a scalar instance, a
vector instance, or a multi-dimensional instance.

C# Signature Value Returned from MATLAB

double[,,] foo() ones(1,2,3)

How you define your MATLAB function and corresponding C# method
signature determines if your output data will be coerced, using padding or
truncation.

This coercion is performed automatically for you. This section describes the
rules followed for padding and truncation.

Note Multidimensional arrays of C# types are supported. Jagged arrays
are not supported.

Padding
When a C# method’s return type has a greater number of dimensions than
MATLAB’s, MATLAB’s dimensions are padded with ones (1s) to match the
required number of output dimensions in C#.

The following tables provide examples of how padding is performed for you:

How Your C# Method Return Type is Padded

MATLAB
Function

C# Method
Signature

When
Dimensions in
MATLAB are:

And
Dimensions in
C# are:

function a =
foo
a = ones(2,3);

double[,,,]
foo()

size(a) is [2,3] Array will be
returned as size
2,3,1,1

2-42

Data Conversion with C# and MATLAB Types

Truncation
When a C# method’s return type has fewer dimensions than MATLAB’s,
MATLAB’s dimensions are truncated to match the required number of output
dimensions in C#. This is only possible when extra dimensions for MATLAB
array have values of ones (1s) only.

To compute appropriate number of dimensions in C#, excess ones are
truncated, in this order:

1 From the end of the array

2 From the array’s beginning

3 From the middle of the array (scanning front-to-back).

The following tables provide examples of how truncation is performed for you:

How MATLAB Truncates Your C# Method Return Type

MATLAB Function C# Method
Signature

When Dimensions
in MATLAB are:

And Dimensions in
C# are:

function a = foo
a =
ones(1,2,1,1,3,1);

double[,] foo() size(a) is
[1,2,1,1,3,1]

Array will be returned
as size 2,3

Following are some examples of dimension shortening using the double
numeric type:

Truncating Dimensions in MATLAB and C# Data Conversion

MATLAB Array Dimensions Declared Output C# Type Output C# Dimensions

1 x 1 double 0 (scalar)

2 x 1 double[] 2

1 x 2 double[] 2

2 x 3 x 1 double[,] 2 x 3

1 x 3 x 4 double[,] 3 x 4

2-43

2 .NET Client Programming

Truncating Dimensions in MATLAB and C# Data Conversion (Continued)

MATLAB Array Dimensions Declared Output C# Type Output C# Dimensions

1 x 3 x 4 x 1 x 1 double[,,] 1 x 3 x 4

1 x 3 x 1 x 1 x 2 x 1 x 4
x 1

double[,,,] 3 x 2 x 1 x 4

Empty (Zero) Dimensions

Passing C# Empties to MATLAB
When a null is passed from C# to MATLAB, it will always be marshaled
into [] in MATLAB as a zero by zero (0 x 0) double. This is independent of
the declared input type used in C#. For example, all the following methods
can accept null as an input value:

void foo(String input);
void foo(double[] input);
void foo(double[,] input);

And in MATLAB, null will be received as:

[] i.e. 0x0 double

Passing MATLAB Empties to C#

An empty array in MATLAB has at least one zero (0) assigned in at least one
dimension. For function a = foo, for example, any one of the following
values is acceptable:

a = [];
a = ones(0);
a = ones(0,0);
a = ones(1,2,0,3);

Empty MATLAB data is returned to C# as null for all the above cases.

For example, in C#, the following signatures return null when a MATLAB
function returns an empty array:

2-44

Data Conversion with C# and MATLAB Types

double[] foo();
double[,] foo();

2-45

2 .NET Client Programming

2-46

A

Data Conversion Rules

A Data Conversion Rules

Conversion Between MATLAB Types and C# Types

This MATLAB type.... Is equivalent to this C# type....

uint8 byte

int8 sbyte

uint16 ushort

int16 short

uint32 uint

int32 int

uint64 ulong

int64 long

single float

double double

logical bool

char System.String, char

cell (strings only) Array of System.String

cell (heterogeneous data types) Array of System.Object

struct A .NET struct or class with public
fields or public properties

Note Multidimensional arrays of above C# types are supported. Jagged
arrays are not supported.

A-2

B

MATLAB Production Server
.NET Client API Classes
and Methods

• “MATLABException” on page B-2

• “MATLABStackFrame” on page B-5

• “MWClient” on page B-8

• “MWHttpClient” on page B-10

• “MWStructureListAttribute” on page B-13

B MATLAB® Production Server™ .NET Client API Classes and Methods

MATLABException

About MATLABException
Use MATLABException to handle MATLAB exceptions thrown by .NET
interfaces

Errors are thrown during invocation of MATLAB function associated with a
MATLAB Production Server request initiated by MWHttpClient.

MATLAB makes the following information available in case of an error:

• MATLAB stack trace

• Error ID

• Error message

Derived from Exception

Members

Constructor

public MATLABException(
string, message
string, identifier
IList<MATLABStackFrame> stackList

);

Creates an instance of MATLABException using MATLAB error message,
error identifier, and a list of MATLABStackFrame, representing MATLAB stack
trace associated with a MATLAB error.

B-2

MATLABException

Constructor Parameters

string, message
Error message from MATLAB

string, identifier

Error identifier used in MATLAB

IList<MATLABStackFrame> stackList

List of MATLABStackFrame representing MATLAB stack trace. An
unmodifiable copy of this list is made

Public Instance Properties

MATLABStackTrace
Returns list of MATLABStackFrame

Gets MATLAB stack with 0 or more MATLABStackFrame.

Each stack frame provides information about MATLAB file, function name,
and line number. The output list of MATLABStackFrame is unmodifiable.

Message

Returns detailed MATLAB message corresponding to an error

MATLABIdentifier

Returns identifier used when error was thrown in MATLAB

MATLABStackTraceString

Returns string from stack trace

Public Instance Methods
None

B-3

B MATLAB® Production Server™ .NET Client API Classes and Methods

Requirements

Namespace
com.mathworks.mps.client

Assembly
MathWorks.MATLAB.ProductionServer.Client.dll

See Also
MATLABStackFrame

B-4

MATLABStackFrame

MATLABStackFrame

About MATLABStackFrame
Use MATLABStackFrame to return an element in MATLAB stack trace obtained
using MATLABException.

MATLABStackFrame contains:

• Name of MATLAB file

• Name of MATLAB function in MATLAB file

• Line number in MATLAB file

Members

Constructor

public MATLABStackFrame(
string, file
string , name
int line

);

Construct MATLABStackFrame using file name, function name, and line
number

Constructor Parameters

string, file
Name of the file

string, name

Name of function in the file

B-5

B MATLAB® Production Server™ .NET Client API Classes and Methods

int line

Line number in MATLAB file

Public Instance Properties

File
Returns complete path to MATLAB file

Name

Returns name of a MATLAB function in a MATLAB file

For a MATLAB file with only one function, Name is equivalent to the MATLAB
file name, without the extension. The name will be different from the
MATLAB file name if it is a sub function in a MATLAB file.

Line

Returns a line number in a MATLAB file

Public Instance Methods

ToString

public override string ToString()

Returns a string representation of an instance of MATLABStackFrame

Equals

public override bool Equals(object obj)

Returns true if two MATLABStackFrame instances have the same file name,
function name, and line number

GetHashCode

public override int GetHashCode()

B-6

MATLABStackFrame

Returns hash value for an instance of MATLABStackFrame

Requirements

Namespace
com.mathworks.mps.client

Assembly
MathWorks.MATLAB.ProductionServer.Client.dll

See Also
MATLABException

B-7

B MATLAB® Production Server™ .NET Client API Classes and Methods

MWClient

About MWClient
Interface of MWHttpClient, providing client-server communication for
MATLAB Production Server.

Members

Public Instance Methods

CreateProxy

T CreateProxy<T>(Uri url);

Returns a proxy object that implements interface T.

Creates a proxy object reference to the deployable archive hosted by the
server. The deployable archive is identified by a URL.

The methods in returned proxy object match the names of MATLAB functions
in the deployable archive that the user wants to deploy, as well as inputs and
outputs consistent with MATLAB function types and values.

When these methods are invoked, the proxy object:

1 Establishes a client-server connection

2 Sends MATLAB function inputs to the server

3 Receives the results

Parameter List

• T — Type of the returned object

• url — URL to the deployable archive, with the form of
http://localhost:port_number/archive_name_without_extension

B-8

MWClient

Close

void Close();

Closes connection with the server.

Requirements

Namespace
com.mathworks.mps.client

Assembly
MathWorks.MATLAB.ProductionServer.Client.dll

See Also
MWHttpClient

B-9

B MATLAB® Production Server™ .NET Client API Classes and Methods

MWHttpClient

About MWHttpClient
Implements MWClient interface.

Establishes HTTP-based connection between MATLAB Production Server
client and server. The client and server can be hosted on the same machine,
or different machines with different platforms.

MWHttpClient allows the client to invoke MATLAB functions exported by a
generic deployable archive hosted by the server. The deployable archive is
made available to the client as a URL.

A server can host multiple deployable archives since each deployable archive
has a unique URL.

In order to establish client-server communication, the following is required:

• URL to the deployable archive in the form:
http://localhost:port_number/archive_name_without_extension

• Names of MATLAB functions exported by the deployable archive

• Information about the number of inputs and outputs for each MATLAB
function and their types

• A user-written interface including:

- Public methods with same names matching those of the MATLAB
functions exported by the deployable archive. Methods must be
consistent with MATLAB functions in terms of the numbers of inputs
and outputs and their types

- Each method in this interface should declare the exceptions:

• Mathworks.MPS.Client.MATLABException— Represents MATLAB
errors

• System.Net.WebException— Represents any transport errors during
client-server communication

- There can be overloads of a method in the interface, depending on the
MATLAB function that the method is representing

B-10

MWHttpClient

- Interface name does not have to match the deployable archive name

Members

Constructor

public class MWHttpClient : MWClient

Creates an instance of MWHttpClient

Public Instance Methods

CreateProxy

T CreateProxy<T>(Uri url);

Returns a proxy object that implements interface T.

Creates a proxy object reference to the deployable archive hosted by the
server. The deployable archive is identified by a URL.

The methods in returned proxy object match the names of MATLAB functions
in the deployable archive that the user wants to deploy, as well as inputs and
outputs consistent with MATLAB function types and values.

When these methods are invoked, the proxy object:

1 Establishes a client-server connection

2 Sends MATLAB function inputs to the server

3 Receives the results

Parameter List

• T — Type of the returned object

• url — URL to the deployable archive, with the form of
http://localhost:port_number/archive_name_without_extension

B-11

B MATLAB® Production Server™ .NET Client API Classes and Methods

Close

void Close();

Closes connection with the server.

Requirements

Namespace
com.mathworks.mps.client

Assembly
MathWorks.MATLAB.ProductionServer.Client.dll

See Also
MWClient

B-12

MWStructureListAttribute

MWStructureListAttribute

About MWStructureListAttribute
MWStructureListAttribute provides .NET types, which are convertible to
and from MATLAB structures.

MWStructureList is used when a variable of declared type System.Object
(scalar or multi-dimensional) either refers to or contains another
MATLAB-struct-convertible type (a user-defined .NET struct or class) at
run time.

MWStructureListAttribute allows you to scope data conversion at field,
property, method, or interface level.

Members

Constructor

public MWStructureListAttribute(
params Type[] structTypes

);

Construct MWStructureListAttribute using an array of user-defined types
(structTypes).

Requirements

Namespace
com.mathworks.mps.client

Assembly
MathWorks.MATLAB.ProductionServer.Client.dll

B-13

	toc
	Client Programming
	MATLAB Production Server Examples Available on MATLAB Central
	Create a MATLAB Production Server Client
	Create a C# .NET Application That Calls a Deployed Function
	Create a Microsoft Visual Studio Project
	Create a Reference to the Client Run-Time Library
	Design the .NET Interface in C#
	Write, Build, and Run the .NET Application
	Unsupported MATLAB Data Types for Client and Server Marshaling

	.NET Client Programming
	.NET Client Coding Best Practices
	.NET Client Prerequisites
	Handling Exceptions
	Managing System Resources
	Using IDisposable to Release Resources Consumed by MWHttpClient

	Data Conversion for .NET and MATLAB Types
	Where to Find the API Documentation

	Prepare Your Microsoft Visual Studio Environment
	Create a Microsoft Visual Studio Project
	Create a Reference to the Client Run-Time Library

	Configure the Client-Server Connection
	Create a Connection with the Default Configuration
	Create a Connection with a Custom Configuration
	Implementing a Custom Connection Configuration

	Invoke MATLAB Functions Dynamically
	Create a Reflection-Based Proxy
	Invoke a MATLAB Function with a Dynamic Proxy
	Return Multiple Outputs
	Return a Single Output
	Return No Outputs

	Create Custom Marshaling Rules

	Access Secure Programs Using HTTPS
	Overview
	Configure the Client Environment for SSL
	Establish a Secure Proxy Connection
	Establish a Secure Connection Using Client Authentication
	Implement the MWSSLConfig Interface
	Establish the Secure Connection

	Implement Advanced Authentication Features

	Bond Pricing Tool for .NET Client
	Objectives
	Step 1: Write MATLAB Code
	Step 2: Create a Deployable Archive with the Server Archive Comp
	Step 3: Share the Deployable Archive on a Server
	Step 4: Create the C# Client Code
	Declare C# Method Signatures Compatible with MATLAB Functions Yo
	Instantiate MWClient, Create Proxy, and Specify Deployable Archi
	Use Dispose() Consistently to Free System Resources

	Step 5: Build the Client Code and Run the Example

	Code Multiple Outputs for C# .NET Client
	MATLAB Function multipleoutputs
	C# Interface MultipleOutputsExample
	C# Method TryMultipleOutputs
	Code Variable-Length Inputs and Outputs for .NET Client
	Using varargin with .NET Client
	MATLAB Function varargintest
	C# Interface VararginTest
	C# Method TryVarargin
	Using varargout with .NET Client
	MATLAB Function varargouttest
	C# Interface VarargoutTest
	C# Method TryVarargout

	Marshal MATLAB Structures (structs) in C#
	Creating a MATLAB Structure
	Using .NET Structs and Classes
	.NET Struct Student
	C# Class SimpleStruct
	MATLAB Function sortstudents
	C# Interface StudentSorter
	C# Class ClientExample
	Using Attributes
	MATLAB Function outcell
	.NET struct Types Struct1 and Struct2
	Method Attributes
	Interface Attributes
	Fields and Property Attributes

	Data Conversion with C# and MATLAB Types
	Working with MATLAB Data Types
	Scalar Numeric Type Coercion
	Dimension Coercion
	Padding
	Truncation

	Empty (Zero) Dimensions
	Passing C# Empties to MATLAB
	Passing MATLAB Empties to C#

	Data Conversion Rules
	Conversion Between MATLAB Types and C# Types

	MATLAB Production Server .NET Client API Classes and Methods
	MATLABException
	About MATLABException
	Members
	Constructor
	Constructor Parameters
	string, message
	string, identifier
	IList<MATLABStackFrame> stackList
	Public Instance Properties
	MATLABStackTrace
	Message
	MATLABIdentifier
	MATLABStackTraceString
	Public Instance Methods

	Requirements
	Namespace
	Assembly

	See Also

	MATLABStackFrame
	About MATLABStackFrame
	Members
	Constructor
	Constructor Parameters
	string, file
	string, name
	int line
	Public Instance Properties
	File
	Name
	Line
	Public Instance Methods
	ToString
	Equals
	GetHashCode

	Requirements
	Namespace
	Assembly

	See Also

	MWClient
	About MWClient
	Members
	Public Instance Methods
	CreateProxy
	Parameter List
	Close

	Requirements
	Namespace
	Assembly

	See Also

	MWHttpClient
	About MWHttpClient
	Members
	Constructor
	Public Instance Methods
	CreateProxy
	Parameter List
	Close

	Requirements
	Namespace
	Assembly

	See Also

	MWStructureListAttribute
	About MWStructureListAttribute
	Members
	Constructor

	Requirements
	Namespace
	Assembly

	tables
	MATLAB to .NET Numeric Type Compatibility
	How Your C# Method Return Type is Padded
	How MATLAB Truncates Your C# Method Return Type
	Truncating Dimensions in MATLAB and C# Data Conversion

